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E�ect of corner angle on convection enhancement in wavy
ducts with trapezoidal cross-sections

S. Savino, G. Comini∗;† and C. Nonino

Dipartimento di Energetica e Macchine, Universit�a degli Studi di Udine;
Via delle Scienze 208; 33100 Udine; Italy

SUMMARY

The e�ect of corner angle variations on pressure drop and heat transfer characteristics is investigated in
the fully developed region of wavy ducts with trapezoidal cross-sections. The resulting enhancement of
convection, with respect to corresponding straight ducts, can be attributed to the formation of longitudinal
vortices close to the two parallel surfaces. Numerical simulations show that Nusselt numbers and friction
factors increase with the decrease of corner angle from 90 to 60◦, before levelling out around 60◦.
Nusselt numbers and friction factors also increase with the Reynolds number, and the slopes of their
representative curves increase above a critical value of the Reynolds number because of the onset of
time-periodic �ow oscillations. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Ducts with trapezoidal cross-sections are often found in compact heat exchangers, recuper-
ators, regenerators, and cooling systems for gas turbines and electronic modules. Exhaustive
literature reviews of forced convection in straight ducts with trapezoidal cross-sections can be
found in References [1, pp. 256–259; 2, pp. 3.68–3.70; 3] for laminar �ow conditions, and in
Reference [4, p. 106] for turbulent �ow conditions. Numerical results for three-dimensional
laminar �ow and heat transfer in the entrance region of straight trapezoidal ducts are illustrated
in Reference [5]. Numerical results for fully developed turbulent �ows in straight trapezoidal
ducts have been presented in an early numerical study of a section with a 75◦ corner angle
[6], and in a more recent analysis related to the accuracy and reliability of turbulence models
[7].
In the past few years, the tendency towards miniaturization of heat transfer equipment and

the need to reduce noise emissions have directed much research interest towards the en-
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hancement of convection in low Reynolds number �ows. Among the geometries that present
convection-enhancing irregularities, wavy ducts are frequently employed for their simplicity.
In wavy ducts with trapezoidal cross-sections, two sides remain parallel over the whole length,
while the angled sides are periodically displaced to form a wavy surface. In spatially periodic
ducts, also the �ow and the dimensionless temperature �elds tend to repeat themselves in a
cyclic manner, attaining a fully developed character after a short distance from the entrance. In
these fully developed regions, wall corrugations prevent the continuous growth of velocity and
thermal boundary layers generating transverse and longitudinal vortices (see, for example, Ref-
erence [8]). A steady �ow model for laminar forced convection in the fully developed region
of wavy ducts with trapezoidal cross-sections has been proposed in Reference [9] where some
numerical results, obtained by a �nite volume method, have also been illustrated. The same
model has then been used to investigate the in�uence of space ratio (average height H over
length L of a corrugation cycle), corrugation angle �, and corner angle � [10]. Computations
have been performed with uniform temperature boundary conditions, for Reynolds numbers
in the range 756Re62000 and for a Prandtl number Pr=0:72. It has thus been found that
convection is strongly enhanced by increasing the corrugation angle � from 15 to 28◦, and
only slightly enhanced by increasing the space ratio H=L from 0.065 to 0.13 and decreasing
the corner angles � from 60 to 45◦. In all the geometries investigated, both convection and
pressure losses increase with the Reynolds number [10]. In accordance with the literature
(see, for example, Reference [8]), pressure drop penalties have been attributed to secondary
�ows associated with longitudinal vortices and to the recirculating regions established as the
�ow separates from the duct walls [10]. On the contrary, convection enhancements have been
attributed only to secondary �ows that move the �uid from the walls to the centre [10]. In
fact, because of the steady model adopted in Reference [10], no time-periodic oscillations of
transverse vortices could have been detected (and transverse vortices that remain steady ob-
struct the main �ow without enhancing convection). However, in actual �ows through wavy
ducts the onset of self-sustained oscillations occurs at a Reynolds number above a critical
value Recr and precedes the transition to turbulence [8]. When the �ow and temperature �elds
become unsteady, transverse vortices travel from upstream to downstream and vice versa,
washing the angled duct walls and moving the �uid from these walls to the centre.
The aim of this paper is to model laminar forced convection in wavy ducts with trapezoidal

cross-sections, using a �nite element approach that accounts for the time-dependent physics
of the �ow. We will consider fully developed convection of air (Pr=0:72) with �ows in
the laminar regime, both below and above the critical value of the Reynolds number. The
approach adopted here has been originally proposed in Reference [11] and has been recently
used to investigate pressure drop and heat transfer characteristics in fully developed regions of
wavy ducts [12, 13]. In Reference [12] the in�uence of space ratio H=L and corrugation angle
� has been investigated in two-dimensional wavy channels. In all the situations considered, it
has been found that friction factors are much higher in wavy than in straight channels. On the
contrary, signi�cant improvements of average Nusselt numbers have been obtained only for
Reynolds number above Recr. For Re¿Recr it has been found that friction factors and Nusselt
numbers increase with both � and H=L, at least until the space ratio is kept within reasonable
limits. In fact increasing the space ratio beyond a certain limit, while maintaining constant
the corrugation angle, makes the �ow passage similar to a plain, albeit rough, channel [12].
In Reference [13] the in�uence of the cross-sectional aspect ratio (width W over height H of
the duct) has been investigated in wavy channels with rectangular cross-sections. It has thus
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been found that both Nusselt numbers and friction factors increase with decreasing aspect
ratios.
Convection enhancement induced by the increase of H=L and �, and the decrease of W=H

have been repeatedly con�rmed through experimental measurements in three-dimensional wavy
ducts with rectangular cross-sections (see, for example, References [14–17]). Since rect-
angular ducts can be viewed as a particular class of trapezoidal ducts with a corner an-
gle �=90◦, it can be assumed that the increase of H=L and �, and the decrease of W=H
enhance convection also in trapezoidal ducts. On the other hand, corner angle variations are
expected to signi�cantly a�ect Nusselt numbers and friction factors by bringing about changes
of intensity and structure in longitudinal vortices. Consequently, this paper investigates the
e�ect of corner angle variations on laminar forced convection in wavy trapezoidal ducts, both
below and above the critical Reynolds number.

2. STATEMENT OF THE PROBLEM

The duct geometry is illustrated in Figure 1. The representation at the top is drawn to
scale and the average height H is measured in a vertical direction, while the width W is
measured in a horizontal direction. A counterclockwise 90◦ rotation of wavy trapezoidal ducts,
favoured in References [9, 10], improves the rendering of three-dimensional representations.
After this rotation, adopted in the remaining representations of Figure 1, readability is cer-
tainly improved but the W and H symbols end up in an unusual position. However, this
notation has been maintained since in most of the literature on wavy ducts the width W is
measured in a direction orthogonal to the plane where the waviness develops [12–17].
According to Figure 1, the duct geometry is completely speci�ed by the cycle length L,

measured in the x direction, the average height H , measured in the y direction, the width
W measured in the z direction, the corrugation angle � and the corner angle �. The duct is
in�nitely long in the x direction, and is made up of an in�nite series of identical corrugation
cycles. After a short distance from the entrance, the �ow and the dimensionless thermal �elds
repeat themselves from cycle to cycle, attaining a fully developed character. These repetitive
�elds allow the limitation of the analysis to a single cycle, such as the one enclosed by the
periodic boundaries S1 and S3. In the present case, however, the additional anti-symmetric
periodicity of the boundary conditions between S1 and S2 allows the limitation of the analysis
to a single module (half-cycle).

2.1. Flow and temperature �elds

Assuming the thermophysical properties of the �uid to be constant and the �ow to be laminar,
the governing equations are the standard Navier–Stokes equations. They can be written as

@v
@#
+ v · ∇v= �∇2v − 1

�
∇p (1)

∇·v=0 (2)

In the above equations, v≡ (u; v; w) is the velocity vector, ∇ ≡ (@=@x; @=@y; @=@z) is the gradient
operator, ∇2 ≡ ∇ · ∇ is the Laplacian operator, # is the time, � is the kinematic viscosity,
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Figure 1. Wavy channels with a trapezoidal cross-section: three-dimensional view drawn to scale (top),
schematic representation of two corrugation cycles after a 90◦ counterclockwise rotation (middle),

cross-section of the duct and computational cell (bottom).

� is the density and p is the deviation from the hydrostatic pressure. In the absence of
volumetric heating, and neglecting the e�ects of viscous dissipation, the energy equation can be
written as

@t
@#
+v · ∇t= a∇2t (3)

where a is the thermal di�usivity.
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Figure 2. Cross-sectional shapes drawn to scale.

In periodic fully developed �ows, the pressure p can be expressed by the sum of a linear
term, accounting for the mean pressure gradient, and a residual term that behaves in a periodic
manner (see, for example, References [11, 18]). Thus, for the situation illustrated in Figure 1,
the pressure can be estimated as

p= − �x+p̃ (4)

where � is a constant representing the mean pressure gradient in the main �ow direction x,
and p̃ is the periodic component. The anti-symmetric periodicity between boundaries S1 and
S2 yields the condition

p̃(L=2; y′′; z)= p̃(0; y′; z) (5)

where y′ is the distance from the angled surface on the right, measured in the positive
horizontal direction y at co-ordinates x=0 and z, while y′′ is the distance from the angled
surface on the left, measured in the negative horizontal direction −y at co-ordinates x=L=2
and at the same z.
Appropriate conditions must be speci�ed at wall and anti-periodic boundaries. At wall

boundaries, the no-slip condition holds good

u= v=w=0 (6)

while the anti-symmetric periodicity between boundaries S1 and S2 leads to the conditions

u(L=2; y′′; z) = u(0; y′; z)
v(L=2; y′′; z) =−v(0; y′; z)
w(L=2; y′′; z) =w(0; y′; z) (7)

Conditions (7) do not specify any in�ow velocity �eld. Thus the pressure gradient � must
be adjusted iteratively until the desired value of the average velocity

�u=
1
S ′

∫
S′
v · n dS (8)
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is obtained [11]. In Equation (8) S ′ is the area of a surface parallel to the in�ow/out�ow
boundaries and n is the unit vector normal to the surface.
The behaviour of the �ow is determined by the Reynolds number

Re=
�uDh
�

(9)

and is characterized by the friction factor

f=
�Dh
� �u2=2

(10)

which is directly related to the mean pressure gradient �. The hydraulic diameter is
de�ned as

Dh =
2WH

H +W= sin �
(11)

The wall boundary condition utilized for the temperature is

t= tw = const (12)

At periodic boundaries, for wall boundary conditions of the �rst kind, the distribution of the
dimensionless temperature

T =
t − tw
tb − tw (13)

identically repeats itself from one corrugation cycle to the next [18]. Therefore, the anti-
symmetric periodicity between corresponding points of a single module can be expre-
ssed as

t(L=2; y′′; z)− tw
tb(L=2)− tw =

t(0; y′; z)− tw
tb(0)− tw (14)

with reference to the boundaries S1 and S2 [11–13]. Equation (14) can be written in the form

t(L=2; y′′; z)=
[
1 +

tb(L=2)− tb(0)
tb(0)− tw

]
t(0; y′; z)− tb(L=2)− tb(0)

tb(0)− tw tw (15)

In the above equations, tb is the bulk temperature, which is usually de�ned as [11]

tb =

∫
S′ |v · n|t dS∫
S′ |v · n| dS (16)

Equation (15) contains two unknown quantities: the bulk temperature at in�ow tb(0) and the
di�erence between bulk temperatures at out�ow and in�ow [tb(L=2) − tb(0)]. In the solution
process the value of the di�erence in bulk temperatures is imposed �rst, and then an iterative
procedure is carried on until convergence is reached for a value of tb(0) which veri�es the
periodicity condition.
The average Nusselt number is de�ned as

Nu=
hDh
k

(17)
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where

h=
q
S�t

(18)

is the average heat transfer coe�cient, S is the area of the heat transfer surface, q is the total
rate of heat transfer and

�t=�tlm =
[tw − tb(L=2)]− [tw − tb(0)]
ln{[tw − tb(L=2)]=[tw − tb(0)]} (19)

is the logarithmic mean temperature di�erence.

2.2. Solution procedure

The momentum, continuity and energy equations are solved by the equal-order, �nite element
procedure based on the projection algorithm illustrated in Reference [19]. The anti-periodic
boundary conditions are introduced as illustrated in detail in References [11–13]. The mo-
mentum and energy equations are discretized with respect to time, in a form that allows
the selection of di�erent time-integration schemes. At each time step a pseudo-velocity �eld
is obtained �rst by neglecting the pressure gradients in the momentum equations. Then, by
enforcing continuity on the pseudo-velocity �eld, a tentative pressure is estimated, and the
momentum equations are solved for the corresponding tentative velocity �eld. Afterwards,
continuity is enforced again to �nd pressure corrections. Pressure corrections are also used
to �nd the velocity corrections that project the tentative velocity �eld onto a divergence-free
space. Once the velocity �eld has been found, the energy equation is solved before moving
to the next step.
The momentum and energy equations are dealt with as particular versions of a general

transport equation, written in the time-discretized form

�
�n+1 − �n
�#

+ �vn · [�v∇�n+1 + (1− �v)∇�n]=�[��∇2�n+1 + (1− ��)∇2�n] + ṡ (20)

for a generic variable � and a time step �#. The properties � and �, and the volumetric source
rate ṡ are identi�ed by inspection of the appropriate original equations for velocity components,
pressure and temperature. The weighting factors �v and ��, both in the range from 0 to 1,
allow the selection of di�erent time-integration schemes. For example the Crank–Nicolson
scheme, employed in this work, results from the choice: �v= �� =0:5. The pressure equation
and the pressure correction equation are also obtained from Equation (20), by assuming �=0
and �� =�=1.
The space discretization of Equation (20) is based on the Bubnov–Galerkin method and

the use of consistent mass and capacity matrices. The �nite element procedure utilized for the
solution of Equation (20) can be classi�ed as a Bubnov–Galerkin Crank–Nicolson scheme with
consistent mass and capacity matrices. In Reference [20], such a scheme has been identi�ed as
the most suitable choice for transient simulations with su�ciently re�ned meshes. In fact, the
scheme is unconditionally stable and not a�ected by numerical di�usion, even if it presents a
numerical dispersion that increases with the Courant number

Co=
|v|�#
�L

(21)
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referred to the time step and a characteristic dimension �L of the cell. Its order of accuracy,
on a uniform mesh with linear elements, is O(�#2;�L2), that is: second order with respect
to both time integrations and space discretizations [20].
The systems of linear equations, arising at each time step from the discretization process,

are solved by means of iterative algorithms. The conjugate gradient squared (CGS) method is
used to solve the discretized momentum and energy equations, while the modi�ed conjugate
gradient method (MCG) is used to solve the symmetric systems obtained from the discretiza-
tion of the Poisson equations. In both cases, preconditioned matrices are obtained from an
incomplete LU decomposition (ILU).

3. RESULTS AND DISCUSSION

As already pointed out, all previous studies on wavy channels agree about enhancement e�ects
connected with increasing the space ratio H=L and the corrugation angle �, and decreasing
the aspect ratio W=H [12–17]. Since it can be assumed that the same conclusions also apply
to trapezoidal channels, this paper only investigates the e�ect of corner angle variations. In
accordance with References [12, 13], the values H=L=0:15, �=20◦ and W=H =1 have thus
been kept constant, while the values �=90, 75, 60 and 45◦ have been adopted for the corner
angle. Calculations have been carried out for laminar convection of air (Pr=0:72), in a
range of Reynolds numbers from Re=100 to values above the critical Reynolds number Recr
associated with the onset of self-sustained �ow oscillations.
By imposing W=H =1 in Equation (11), we easily arrive at the relationship

H
Dh
=
1 + sen �
2sen �

(22)

The use of the hydraulic diameter as the reference length yields the cross-sectional shapes
represented in Figure 2. In particular, the value �=90◦ leads to a square section, while the
value � = 45◦ leads to an isosceles triangular section.
Cross-sections of grids used in the discretization process are illustrated in Figure 3, where

the � = 75 and 45◦ geometries are reported as an example. Structured meshes have been
utilized for rectangular and trapezoidal sections, while block-structured meshes have been
employed for triangular sections. In both cases, spacings are �ner near the walls. The �-
nal three-dimensional meshes have been obtained by extruding, deforming and cutting into

Figure 3. Cross-sections of grids used in the discretization process: �=75◦ (left) and �=45◦ (right).
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Table I. Friction factors and Nusselt numbers for fully developed velocity and temperature �elds in
straight trapezoidal channels for W=H =1 and di�erent corner angles.

� (◦) (fRe)0 Nu0
Reference [3] Present Reference [3] Present

90 57.00 57.04 2.96 2.97
75 56.72 56.62 2.89 2.90
60 55.44 55.43 2.70 2.71
45 52.64 52.71 2.34 2.34

eight-node (brick) elements the two-dimensional meshes. The resulting brick elements have
been spaced more closely near the in�ow/out�ow sections.
The calculations concern steady- and unsteady-state solutions that have been obtained from

pseudo-transient, or transient, simulations, respectively. When the �ow character changed from
steady to oscillatory, space-averaged parameters were further averaged over a period 	 yield-
ing single representative values

〈’〉= 1
	

∫ #+	

#
’(#) d# (23)

with ’=f or Nu. To lighten the notation, the symbol 〈 〉 has always been omitted, except
when referring to time-averaged velocity vectors.
Grid independence has been established on the basis of preliminary calculations, in which

the distance between grid points has been progressively reduced by 30% from one simu-
lation to another. When a further decrease led to a change in the average Nusselt num-
bers smaller than 1%, the results were considered to be grid-independent. In the �nal sim-
ulations the number of nodal points, and the corresponding number of elements, varied
from 30 625 (=25× 25× 49) nodal points and 27 648 elements for structured meshes, to
30 919 (=631× 49) nodal points and 28 224 elements for block-structured meshes. Time-step
independence has also been established on the basis of preliminary calculations in which the
dimensionless time step ��= �u�#=L has been progressively reduced by 30% from one sim-
ulation to another. When a further decrease led to a change in the average Nusselt numbers
smaller than 1%, the results were considered to be independent of the time step. In the �nal
simulations, a Crank–Nicolson scheme with a dimensionless time step equal to 0.01 has been
used for transient solutions, and a fully implicit scheme with a dimensionless time step equal
to 0.02 has been used for steady-state solutions.
The reliability of the calculation procedure described in previous sections had already been

demonstrated [11–13]. However, the accuracy has been assessed once again here by impos-
ing periodicity conditions on small portions of straight trapezoidal channels characterized by
di�erent corner angles. In this way, results concerning friction factors and Nusselt numbers
for fully developed velocity and temperature �elds in straight channels have been obtained.
As shown in Table I, the numerical results for W=H =1 and �=90, 75, 60, and 45◦ are
independent of the Reynolds and Prandtl numbers and agree to the third digit with the analyt-
ical solutions proposed in Reference [3]. It is interesting to note that, in straight trapezoidal
channels, friction factors and Nusselt numbers decrease with decreasing corner angles. On
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Figure 4. Contours of streamwise velocity components and transverse velocity vectors
at inlet sections of modules for Re=200.

the other hand, the conclusions reached for straight channels, where longitudinal vortices and
transverse �ow oscillations do not occur, cannot be assumed to hold good also for wavy
channels, where longitudinal vortices and transverse �ow oscillations are expected.

3.1. In�uence of longitudinal vortices

In all channels, and in the whole range of Reynolds numbers investigated, two longitudinal
counter-rotating vortices have been found close to the parallel walls. Contours of streamwise
velocity components u and transverse velocity vectors are shown in Figure 4 for Re=200,
a lower than critical value for all the channels considered. In this �gure, reference is made
to the inlet section (x=0) where the inner wall of the bend appears on the left. As can be
seen, the centrifugal force due to the curvature pushes the peak of the axial velocity from the
inner bend towards the outer wall. In the vicinity of upper and lower walls, where streamwise
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Figure 5. Trajectories and transverse velocity vectors at inlet/outlet sections of modules for Re=200.

velocities are limited by viscous forces, this produces the secondary �ows visualized by the
transverse velocity vectors.
Trajectories and transverse velocity vectors at inlet/outlet sections of a module are illustrated

in Figure 5, where the development of the two longitudinal counter-rotating vortices is clearly
visible. Angular velocities have opposite signs on inlet and outlet sections of each module.
Magnitudes of rotational velocities are the largest at inlet/outlet sections of the module and
tend to zero in one intermediate section.
Secondary �ows, associated with longitudinal vortices, move �uid from the walls to the

centre and, thus, have a bene�cial e�ect on the distribution of heat �uxes qn. Wall distributions
of heat �uxes are shown in Figure 6, where lighter tones are associated with higher values
of the dimensionless parameter q′′=q′′

max. As can be seen, secondary �ows connected with
longitudinal vortices leave clear traces in the heat �ux distribution.

3.2. In�uence of �ow oscillations

Until �ows remain steady (i.e. for Re¡Recr), transverse vortices are con�ned to recirculation
zones where little �uid enters. Therefore, the growth of recirculation zones with the Reynolds
number increases pressure losses by diminishing the areas of main �ow passages, but does
not contribute to the enhancement of heat transfer [8, 12, 13]. At Re¿Recr, transverse vortices
start detaching periodically and moving downstream. This process transports fresh �uid from
the walls to the core, enhancing rates of energy transfer. The value of the critical Reynolds
number depends on the geometrical con�guration. Its direct calculation is an almost impossible
task because the transients become longer and longer as one approaches the critical point and
the amplitude of the oscillations tends to zero. Thus the results of Table II refer to a
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Figure 6. Distributions of dimensionless heat �uxes q′′=q′′
max at Re=200. Lighter tones

are associated with higher values.

Table II. Wavy trapezoidal channels with H=L=0:15, � = 20◦, W=H =1 and di�erent corner angles
�: approximate values of the critical Reynolds number (Recr), and dominant frequencies (St) of the

oscillations of the space-averaged Nusselt number at Re=270.

� (◦) 45 60 75 90
Recr 250 265 230 240
St 0.56 0.52 0.11 0.12

condition slightly above the critical, and the values reported have been found by a trial-and-
error procedure.
With reference to Figure 7, let us consider the projections of di�erences v − 〈v〉 between

instantaneous and time-averaged velocities on the horizontal mid-planes of the investigated
channels at Re=270, a higher than critical value for all the channels considered. From the
instantaneous representations it does appear that lateral walls are washed by transverse vor-
tices travelling downstream. The highest intensities of transverse vortices at �=90 and 75◦

correspond to the lowest values of the critical Reynolds number, while the lowest intensities
at �=60 and 45◦ correspond to the highest value of the critical Reynolds number. In fact,
the intensity of transverse vortices increases with the Reynolds number for Re¿Recr, since at
Recr the �ow starts a transition towards turbulence.
The time behaviour of the Nusselt number at Re=270 is illustrated in Figure 8 for

all the ducts considered. In this �gure, the variations of the Nusselt number with the
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θ = 0   Θ/4 3Θ/4Θ/2

Figure 7. Wavy trapezoidal ducts at Re=270: di�erences between instantaneous and time-averaged
velocity vectors in the vertical mid-plane at 	=4 intervals.
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Figure 8. Wavy trapezoidal ducts at Re=270: time behaviour of the space-averaged Nusselt number
(left), and corresponding power density spectra of peak-to-peak amplitudes of its oscillations (right).
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dimensionless time

�=
# �u
Dh

(24)

are plotted on the left, while the corresponding spectra of the peak-to-peak amplitudes A of its
oscillations are plotted on the right as a function of the dimensionless frequency (the Strouhal
number)

St=
Dh
�u	

(25)

As expected, all Nu vs � representations indicate time-periodic behaviour at Re=270. Cor-
respondingly, the fast Fourier transform shows dominant frequencies whose dimensionless
values, i.e. Strouhal numbers, seem to change according to a Feigenbaun-like scenario of
transition to turbulence. The route described by Feigenbaun involves a series of successive
frequency-halving bifurcations that are brought about by the increase of the Reynolds number
[21]. In the Fourier space, these inverse cascades �rst yield a quite distributed spectrum over
a broad frequency range and, at the end, a transition to chaos. In the �ows investigated here,
the increase of corner angle plays a role that is similar to the increase of the Reynolds number
in constant geometries ducts. As shown in Table II the highest values of the Strouhal number
correspond to the lowest values of corner angle (�=45 and 60◦), while the lowest values
of the Strouhal number correspond to the highest values of corner angle (�=75 and 90◦).
In particular, for �=75◦ we have the lowest values of both the Strouhal number (St=0:11)
and the critical Reynolds number (Recr = 230). Furthermore, numerical calculations, not illus-
trated here, have shown that the �=75◦ geometry is the �rst to undergo a transition to chaos
(around Re=280).

3.3. Quantitative comparisons

The momentum and heat transfer characteristics of wavy ducts can be described in terms of
average Nusselt numbers and apparent friction factors. In Figure 9, the values of f and Nu
pertaining to wavy ducts with trapezoidal cross-sections have been divided by the values of
f0 and Nu0 pertaining to the fully developed regions of straight trapezoidal ducts with the
same cross-sections. For a given Reynolds number, these ampli�cation factors increase with
decreasing values of the corner angle, but level out around �=60◦. For a given corner angle,
ampli�cation factors always increase with the Reynolds number. In correspondence with the
critical value of the Reynolds number the slopes of the f=f0 and Nu=Nu0 vs Re curves increase
because of the onset of transverse vortices. The changes in slope are more pronounced in the
�=90 and 75◦ ducts, where the intensities of transverse vortices are higher, than in the �=60
and 45◦ ducts, where the intensities of transverse vortices are lower.
In Figure 10, the values of fRe and Nu have been compared for the di�erent cross-sections.

As can be seen, friction factors and Nusselt numbers �rst increase with decreasing corner an-
gles, but then start to decrease around �=60◦. For straight channels, on the contrary, the
results of Table I demonstrate that both friction factors and Nusselt numbers decrease mono-
tonically with decreasing corner angles. Thus the conclusions reached for straight trapezoidal
channels, where longitudinal vortices and transverse �ow oscillations are absent, do not apply
to wavy trapezoidal channels where longitudinal vortices and transverse �ow oscillations play
a very important role.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:885–903



900 S. SAVINO, G. COMINI AND C. NONINO

N
u

N
u 0

f f 0

75°

� = 60° 
45°

90°

90°

� = 60° 

45°

75°

Re

Re

1.4

1.6

1.8

2.0

2.2

2.4

50 100 150 200 250 300 350

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

50 100 150 200 250 300 350

Figure 9. Apparent friction factors and average Nusselt numbers in wavy trapezoidal ducts, normalized
with corresponding values for straight trapezoidal ducts with the same cross-section.

3.4. Performance evaluation

In boundary layer �ows, the momentum and heat transfer characteristics are related by the
Chilton–Colburn analogy, which can be written in the form

	=
j
f
=

Nu
RePr1=3

1
f
=const (26)

where j is the Colburn factor for heat transfer, and 	 can be interpreted as a goodness factor.
This analogy is strictly valid for boundary layer �ows over a �at plate but, by adjusting the
value of the constant, the analogy can still be applied to other non-recirculating �ows. In
recirculating �ows, such as the ones occurring in wavy ducts with trapezoidal cross-sections,
the Chilton–Colburn analogy does not hold good, but 	=	0 and 	 can still be used in perfor-
mance comparisons of the kind reported in Figure 11. Once again the subscript 0 indicates
that reference is made to a straight duct with the same cross-section.
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Figure 10. Apparent friction factors and average Nusselt numbers in wavy trapezoidal ducts.

4. CONCLUSIONS

The e�ect of corner angle variations has been investigated with respect to the enhancement
of convection heat transfer in the fully developed region of three-dimensional wavy channels
with trapezoidal cross-sections. The discretization has been based on a �nite element proce-
dure utilizing a Bubnov–Galerkin Crank–Nicolson scheme with consistent mass and capacity
matrices. Velocity and temperature �elds obtained from the numerical simulations reveal the
existence of longitudinal vortices close to the parallel surfaces. These vortices enhance the
transport of energy by mixing �uid near walls with �uid in the central part of the duct. Fur-
thermore, when the �ow and temperature �elds become unsteady, above a critical value of the
Reynolds number, a new convective heat transfer mechanism appears: the periodic washing
of the inclined walls by travelling transverse vortices.
Quantitative results have been obtained for Nusselt numbers, apparent friction factors and

goodness factors. For a given Reynolds number, Nusselt numbers and friction factors increase
initially with the decrease of the corner angle � from 90 to 60◦, but then level out around
� = 60◦. For a given corner angle, Nusselt numbers and friction factors always increase with
the Reynolds number. Furthermore, in correspondence with the critical value of the Reynolds
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Figure 11. Goodness factors in wavy trapezoidal ducts. Subscript ‘0’ indicates reference to
a straight duct with the same cross-section.

number, the slopes of the friction factor and Nusselt vs Re curves increase because of the
onset of time-periodic �ow oscillations.
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